# はだか麦の多収阻害要因と 総合改善対策マニュアル



|   | 目                    | 次   |                    |
|---|----------------------|-----|--------------------|
| 1 | 主要品種「ハルヒメボシ」の特性1     | 4   | 雜草防除······12       |
| 2 | 愛媛県のはだか麦の多収阻害要因は何か?2 | 5   | 播種13               |
| 3 | 圃場の多収阻害要因診断フローチャート5  | 6   | 施肥体系               |
| 4 | 診断と改善対策              | 7   | 麦踏み・土入れ16          |
|   | 1 土壌物理性診断7           | 8   | 病害防除17             |
|   | 2 湿害対策8              | 9   | 適期収穫19             |
|   | 3 土壌化学性(pH)11        | 5 7 | 改善対策の総合実証と経済性の評価21 |
|   |                      |     |                    |

令和2年3月 愛媛県農林水産研究所

## 主要品種「ハルヒメボシ」の特性

### 1 品種の特徴

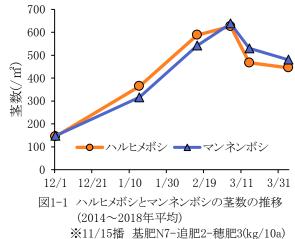
「ハルヒメボシ」は西日本農業研究センターにおいて育成され、2013年に愛媛県の奨励品種に採用された はだか麦品種である。従来品種よりも硝子粒の発生率が低く、精麦白度が高く、高い味噌加工適性を有する。 栽培面では、早生で穂が長く多収で、倒伏に強く成熟期以降の中折れも発生しにくいことが特徴である。

### 2 特性の概要(表1-1)

- (1) 出穂期、成熟期ともに「マンネンボシ」に比べて、1~ 3日早い早生。
- (2) 稈長は「マンネンボシ」と同程度で、穂長は「マンネン ボシ」よりやや長い。
- (3) 穂数は「マンネンボシ」と同程度で、千粒重は「マン ネンボシ」よりやや軽い。収量は「マンネンボシ」よりや や多い。
- (4) 容積重は「マンネンボシ」よりやや軽く、硝子粒は「マ ンネンボシ」より明らかに少ない。原麦白度及び精麦 白度は「マンネンボシ」より明らかに高い。粒厚は「マン ネンボシ」よりやや薄い。



- (5) 耐倒伏性及び中折れ耐性は「やや強」(「マンネンボシ」よりやや劣る)。
- (6)縞萎縮病抵抗性は「やや強」、うどんこ病抵抗性は「やや弱」、赤かび病抵抗性は「中」、耐湿性は「中」。
- (7) 穂発芽性は「難」(「マンネンボシ」よりやや難性)。


表1-1 奨励品種決定調査(ドリル播栽培)における成績(播種日11/18)

|         | 出穂期   | 成熟期   | 稈長   | 穂長   | 倒伏  | 穂数          | 千粒重  | 子実重    | 容積重   | 精麦   | 硝子率 | 粒厚分布(%) |        |        | 検査     |     |
|---------|-------|-------|------|------|-----|-------------|------|--------|-------|------|-----|---------|--------|--------|--------|-----|
|         | (月/日) | (月/日) | (cm) | (cm) | 程度  | $(\pm/m^2)$ | (g)  | (kg/a) | (g/L) | 白度   | (%) | >2.6mm  | >2.4mm | >2.2mm | >2.1mm | 等級  |
| ハルヒメホ゛シ | 3/31  | 5/19  | 85   | 5.8  | 0.4 | 389         | 34.2 | 53.9   | 791   | 44.8 | 33  | 25.8    | 41.5   | 27.3   | 4.4    | 1.2 |
| マンネンホ゛シ | 4/3   | 5/21  | 85   | 5.0  | 0.5 | 390         | 35.0 | 50.1   | 806   | 41.8 | 53  | 43.2    | 37.8   | 18.8   | 0.2    | 1.2 |

数値は2005~2012年播の平均(硝子率は2011~2012年播、粒厚分布は2017~2018播)。 子実重は2.0mm以上篩上。 倒伏程度は無(0)~甚(5)の6 段階。等級は3反復の平均。

### 3 栽培上の留意点

(1)「マンネンボシ」に比べやや小粒のため播種量を確認 「ハルヒメボシ」の粒厚は「マンネンボシ」よりもやや細 いため、ドリル式播種機を用いた場合、播種時に播種 機から落ちる種子粒数は「マンネンボシ」よりも多くなり がちである。そのため、播種前に必ず播種量設定を確 認する。また、播種量は基準値(p.14)通りとし、厚播き は避ける。



### (2)初期生育が旺盛で過繁茂になりやすいため早めに追肥

「ハルヒメボシ」は「マンネンボシ」よりも早生で、出穂期が1~3日早いことから、追肥も「マンネンボシ」より数日早める必要がある。さらに、「ハルヒメボシ」は「マンネンボシ」に比べ、12月~2月中旬(茎立ち期前)までの分げつ出現速度が速く茎数が多い(図1-1)ため、暖冬・多雨・厚播き・早播き等の条件下で過繁茂や黄化が発生しやすい。黄化が発生すると、分げつの増加が鈍くなり穂数が減少するため、中間追肥は必ず施用遅れのないように注意する(詳細:p.15)。

### 2 愛媛県のはだか麦の多収阻害要因は何か?

愛媛県産はだか麦の平均収量は、1996年産の458kg/10aをピークに低下傾向にあり、2015年産は220kg/10a、2016年産は206kg/10aまで低下した(図2-1)。

そこで、2016~2018年産まで、県内各地の現地圃場の土壌条件や栽培体系等について調査を行い、**多収阻害要因**を明らかにした。

調査は、同一農家の高収圃場と低収圃場の 比較対を毎年異なる圃場で、東予(西条、周桑) 16対、中予(東温、伊予)11対、計54圃場を対象 とした。

東予地域の代表的な土壌タイプは中粗粒灰 色低地土(平均収量257kg/10a)または中粗粒グライ

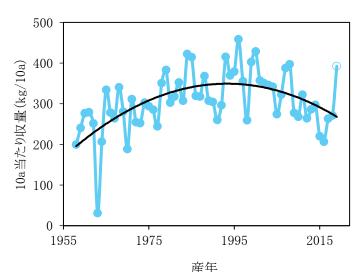



図 2-1 愛媛県産はだか麦の単収の推移

土(同456kg/10a)で、中予地域では礫質灰色低地土(同338kg/10a)であった(表2-1)。

表 2-1 東予および中予の土壌タイプ別平均収量と調査地点数

|    |            | 黄色土 | 褐色低地土 |     | 灰色低 | グライ | /土    |     |     |
|----|------------|-----|-------|-----|-----|-----|-------|-----|-----|
|    |            | 細粒  | 礫質    | 細粒  | 中粗粒 | 礫質  | 下層黒ボク | 中粗粒 | 礫質  |
| 東予 | 収量(kg/10a) | -   | 303   | 282 | 257 | 399 | -     | 456 | 295 |
|    | (地点数)      | 0   | 2     | 4   | 11  | 2   | 0     | 9   | 4   |
| 中予 | 収量(kg/10a) | 256 | 277   | 512 | 357 | 338 | 410   | -   | -   |
|    | (地点数)      | 2   | 1     | 3   | 2   | 12  | 2     | 0   | 0   |

近年の現象としての低収は、気象要因として麦作期間中の降水量の増加が挙げられ、それによって引き起こされる湿害が主な要因と考えられる。播種後に起こる「秋の湿害」では、出芽不良、茎数(穂数)不足、生育遅延が、茎立期から登熟期に起こる「春の湿害」では、粒数や粒張の低下、枯れ熟れが発生していると考えられる。

現地調査ではさらに、これら湿害等が起こりやすい土壌・栽培条件等について調査を行った。

### 抽出された多収阻害要因

### (1)成熟期の地下水位

降雨2日後の地下水位が地表面から50cm未満(図2-4)。 地下水位が高い圃場では、湿害を受けやすく、収量が低下する。

### (2)茎立~出穂期の土壌水分

降雨1日後の土壌水分(ロッド長20cmのTDR土壌水分計で測定)が、60%以上または25%以下(図2-5)。 土壌水分が高い圃場、また、水はけが良すぎて乾燥気味の圃場でも収量が低下する。

### (3)作土内水位

降雨1日後の作土内の水位が、茎立~出穂期では地表面から7cm以内、成熟期では10cm以内(図2-6、図2-7)。作土内水を低く抑えるためには、圃場内の明きょの深さは10cm以上とし、降雨後はすみやかに排水できるようにする。

### (4)貫入式土壌硬度計振り切れ深と有効土層深

貫入式土壌硬度計が振り切れる(およそ3MPa。土壌が硬く、これより深く根が伸長できなくなる)深さが地表面から25cm以内(図2-3、2-8)。

または、検土杖等で測定した**有効土層深**が27cm以内(図2-9、4-3)。

### <貫入式土壌硬度計(図2-2)>

土壌の深さごとの硬度を測定できる計器。植物根の伸長の難易や、農業機械の走行性に影響を及ぼ す地耐力等の判定に用いられる。



図 2-2 貫入式土壌硬度計 (上:データ表示端末)

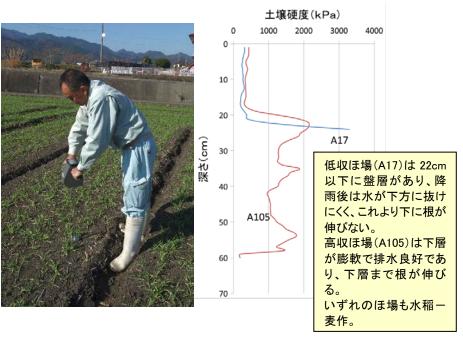



図 2-3 貫入式土壌硬度計での測定の様子と測定データ

### <有効土層とは>

作物の根が障害なく伸長できる土層のこと。盤層、緻密層、極端な砂礫層、地下水面があれば、その 上層まで。このマニュアルでは緻密度(土壌の硬さ)を対象とした。(測定方法:p.7)

### (5)土壤pH

収穫跡地の土壌が、地下水位50cm未満の圃場ではpH5.4以下、地下水位50cm以上の圃場ではpH4.8以下 (図2-10)。

### (6)土壌の交換性カリ

作土の交換性カリ濃度が、13mg/100g以下(図2-11)。

#### (7)適期外作業

作付規模の拡大や天候不順による適期外播種(極端な遅播き)、管理作業の遅れなど。

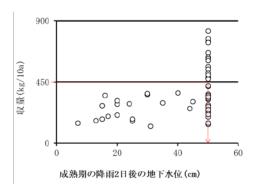



図 2-4 成熟期の降雨 2 日後の地下水位と収量 ※ 地 下 水 位 50cm 未満 で は、高 収 量 (450kg/10a以上)の圃場がない。

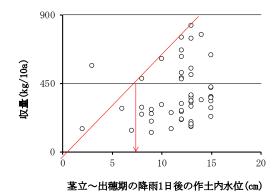



図 2-6 茎立〜出穂期の降雨1日後の作土内水位と収量 ※作土内水位が7cm未満では、高収量の圃場 がほとんどない。

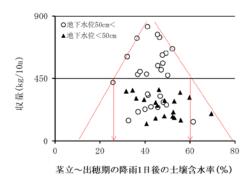



図 2-5 茎立〜出穂期の降雨 1 日後の土壌含水率と収量 ※高収量の圃場は、土壌含水率 25〜60%の範 囲に分布している。

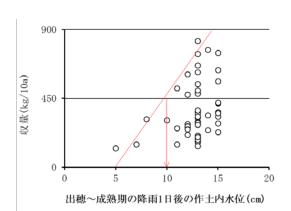



図 2-7 成熟期の降雨 1 日後の作土内水位と収量 ※作土内水位が 10cm 未満では、高収量の圃 場がない。

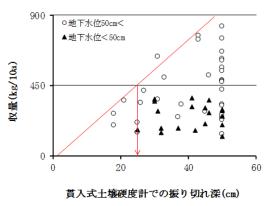



図 2-8 貫入式土壌硬度計の振り切れ深と収量

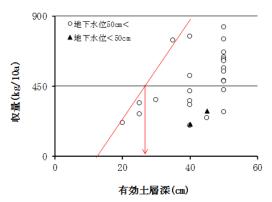



図 2-9 有効土層深と収量

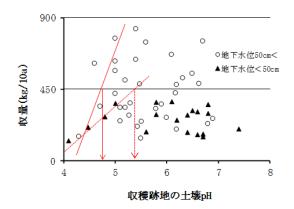



図 2-10 収穫跡地の土壌 pH と収量

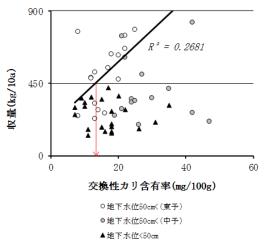
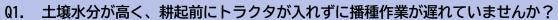




図 2-11 土壌の交換性カリ含有率と収量

# 3 圃場の多収阻害要因診断フローチャート

次ページは、麦作付前に前年までの圃場やはだか麦の成長の様子を振り返り、栽培期間中の多収阻害要因を判定するためのフローチャートである。各要因の改善対策を参照し、次作の栽培改善にご利用ください。

# 昨年までのはだか麦圃場のトラブルを振り返ってみましょう



Q2. 生育期間を通じて、降雨2日後に圃場面に水たまりが残っていませんか?



排水改善・湿害対策

播種~苗立ち期

圃場の排水性を診断して 排水改善・湿害防止対策を行い ましょう  $\rightarrow$ p. 7

Q3. ㎡当たり苗立ち数は?

### 250 本以上

播種量を減らしましょう 黄化と分げつ数について  $\rightarrow$ p. 14. 15

### 150 本程度

適正本数です

### 100 本以下

### 【土壌水分が高い】

- ・多雨、排水不良 →p.8 【作業上の問題】
- ・耕起回数が多く土が練る、土壌表面が固結 →播種前耕起は最低限に
- ・播種深が深すぎ/浅すぎ
  - →播種はじめに深さを確認
  - →稲わらを広げておく

【除草剤の薬害】  $\rightarrow$ p. 13

#### 黄化は発生していませんか? Q4.

### 分げつが多く生育旺盛

・早播き、厚播き、暖冬 追肥  $\rightarrow$ p. 14 麦踏み  $\rightarrow$ p. 16

### 分げつが少なく生育停滞

- ・湿害 ⇒p.8 ·低pH  $\rightarrow$ p. 11
- ・乾燥害  $\rightarrow$ p. 16 ・除草剤の薬害  $\rightarrow$ p. 13
- · 多雨(肥料の流亡)→p. 14

### Q5. 雑草の発生は 多いですか?

【雑草多発生】→p.12 助長要因:湿害 p.8

黄化を発生させないよう 早めに追肥を施用しましょう 黄化について→p.15 追肥時期について→p.16

→p. 8

 $\rightarrow$ p. 16

 $\rightarrow$ p. 16

 $\rightarrow$ p. 17

#### Q6. 収穫までに生育トラブルが起こらず、収量を確保できましたか?

### 枯れ熟れの発生

- ・排水不良
- ・乾燥害
- ・根張り不足
- ・窒素不足による活力低下→p.14
- ・株腐病

- 穂数が少ない、穂が短い
- ・排水不良
- $\rightarrow$ p.8 ・肥料不足  $\rightarrow$ p. 14

### 【その他】

- ・病害
- $\rightarrow$ p. 17 ・雑草害  $\rightarrow$ p. 12

### 倒伏

- ・根張り不足→p.16
- 早播き  $\rightarrow$ p. 14

#### 適期収穫で1等 A ランクの麦を目指しましょう $\rightarrow$ p. 19

分げつ期~茎立ち期